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Abstract

Aerosol, rainwater, and sea fog water samples were collected during the cruise con-
ducted over the subarctic Western North Pacific Ocean in the summer of 2008, in order
to estimate dry, wet, and sea fog deposition fluxes of atmospheric inorganic nitrogen
(N). During sea fog events, mean number densities of particles with diameter larger5

than 0.5 µm decreased by 12–78 %, suggesting that particles with diameters larger
than 0.5 µm could act preferentially as condensation nuclei (CN) for sea fog droplets.
Mean concentrations of nitrate (NO−

3 ), methanesulfonic acid (MSA), and non sea-salt

sulfate (nss-SO2−
4 ) in sea fog water were higher than those in rainwater, whereas those

of ammonium (NH+
4 ) in both sea fog water and rainwater were similar. These results10

reveals that sea fog scavenged NO−
3 and biogenic sulfur species more efficiently than

rain. Mean dry, wet, and sea fog deposition fluxes for atmospheric total inorganic N
(TIN; i.e. NH+

4 +NO−
3 ) over the subarctic Western North Pacific Ocean were estimated

to be 4.9±2.6 µmolm−2 d−1, 33± 47 µmolm−2 d−1, and 7.8± 8.7 µmolm−2 d−1, re-
spectively. While NO−

3 was the dominant inorganic N species in dry and sea fog de-15

position, inorganic N supplied to surface waters by wet deposition was predominantly
by NH+

4 . The contribution of dry, wet, and sea fog deposition to total deposition flux for
TIN (46±48 µmolm−2 d−1) were 11 %, 72 %, and 17 %, respectively, suggesting that ig-
noring sea fog deposition would lead to underestimate of the total influx of atmospheric
inorganic N into the subarctic Western North Pacific Ocean, especially in summer pe-20

riods.

1 Introduction

Atmospheric transport of particulate matter from the continents to the oceans is well
recognized as a major pathway for supply of natural and anthropogenic materials to
open ocean surface waters, including nutrients (Duce et al., 1991; Jickells, 1995). Pre-25

vious studies have highlighted the significance of the atmosphere as a pathway for
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transport of essential nutrients for biological growth such as nitrogen (N), from conti-
nents to marine surface waters and its critical role in oceanic biogeochemical cycling
(e.g. Duce et al., 1991, 2008; Prospero et al., 1996; Paerl, 1997; Galloway et al., 2004;
Dentener et al., 2006; Baker et al., 2010; Kim et al., 2011; Jung et al., 2011).

While numerous studies have dealt with the input of nutrients via atmospheric depo-5

sition, especially dry and wet deposition, relatively little is known about the deposition
flux of atmospheric constituent by fog (Lange et al., 2003). Scavenging processes of
water-soluble gases (e.g. HNO3, NH3, and SO2) and aerosols in the atmosphere by
fog events are determined by the properties of ionic compositions in fog water and
by the growth rate of fog droplets during fog events (Aikawa et al., 2007). The chem-10

ical compositions of the particles acting as condensation nuclei (CN) determine the
initial compositions of the fog droplets, which can be further altered by uptake of water-
soluble gases and by aqueous phase chemical reactions (Sasakawa et al., 2003; Raja
et al., 2008). In fog, the condensation of water vapor on pre-existent particles in the
boundary layer shifts the aerosol size distribution towards larger sizes and accelerates15

their removal from the atmosphere (Jacob et al., 1984; Sasakawa et al., 2003; Herckes
et al., 2007; Li et al., 2011). The deposition of fog can contribute significantly to the hy-
drologic, pollutant, and nutrient cycles in coastal and mountainous regions, since it is
an important transfer process for water and various inorganic and organic substances
from the atmosphere to the biosphere (Lovett et al., 1982; Jacob et al., 1984; Collett20

et al., 2001; Zhang and Anastasio, 2001; Klemm and Wrzesinsky, 2007). However,
quantifying fog deposition flux for atmospheric nutrient or pollutant and assessing its
impact are still a challenge in atmospheric science and ecosystem research (Klemm
and Wrzesinsky, 2007).

Considerable effort has been devoted to investigating the chemical and physical25

properties of fog in valleys, mountains, and urban areas (e.g. Collett et al., 2001, 2002;
Burkard et al., 2002; Moore et al., 2004; Lu et al., 2010; Li et al., 2011). However,
sea fog has not been extensively investigated (e.g. Sasakawa and Uematsu, 2002,
2005; Sasakawa et al., 2003); although it may stimulate phytoplankton growth over the
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oceanic regions where sea fog occurs frequently and atmospheric nutrients derived
from natural and anthropogenic sources are transported and/or affected (Sasakawa
et al., 2003). It is therefore necessary to clarify the scavenging process of atmospheric
nutrients by sea fog and to quantify their deposition flux to the sea surface.

Rapid growth in human population and industrial activity have led to increases in5

the concentrations of reactive N species throughout the environment (Galloway et al.,
2008). In particular, the increase in nitrogen oxides (NOx) emissions in Eastern Asia
has been dramatic over the last decade (Akimoto, 2003; Uno et al., 2007). The Western
North Pacific receives a large influx of mineral particles and pollutants from the Asian
continent through atmospheric long-range transport (Uematsu et al., 1983; Gao et al.,10

1992; Nakamura et al., 2005; Uematsu et al., 2010). Accordingly, estimating deposition
flux of atmospheric N and evaluating its impact on marine biogeochemical cycles over
the Western North Pacific have become increasingly important. In addition, the sub-
arctic Western North Pacific (> 40◦ N) has a high sea fog frequency, with a maximum
of ∼50 % during the summertime period from June to August (Wang, 1985). Neverthe-15

less, no study has been carried out over this region to estimate atmospheric N input
via dry, wet, and sea fog deposition simultaneously. This study therefore aims to (1)
investigate general characteristics of sea fog, (2) estimate the fluxes of atmospheric N
via dry, wet, and sea fog deposition, (3) estimate the contribution of each deposition
to atmospheric N input, and (4) evaluate the impact of atmospheric N deposition on20

the ocean marine ecosystem. In this study, we focus on ammonium (NH+
4 ) and nitrate

(NO−
3 ) that are dominant components for N supply to the oceans (Krishnamurthy et al.,

2010). The results for atmospheric inorganic N deposition from this study should be
valuable for filling the data gap, especially for the atmospheric inorganic N input by sea
fog deposition to the subarctic Western North Pacific Ocean.25
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2 Methods

Aerosol (n = 11), rain (n = 7), and sea fog (n = 15) samples were collected over the
subarctic Western North Pacific Ocean during Leg 1 of the KH-08-2 cruise (29 July–19
August 2008) aboard R/V Hakuho Maru (Fig. 1).

2.1 Aerosol collection5

A high-volume virtual impactor air sampler (AS-9, Kimoto Electric Co., Ltd.) was used
to collect marine aerosols on a Teflon filter (PF040, 90 mm in diameter, Advantec).
The sampler used an inertial force to separate atmospheric aerosols according to
their aerodynamic diameters, which were segregated into fine (D < 2.5µm) and coarse
modes (D > 2.5µm) on the same filter (Nakamura et al., 2005; Jung et al., 2011).10

The aerosol sampler was put on the front of the upper deck (17 m a.s.l.) of the ship.
A wind-sector controller was used to avoid contamination from the ship’s exhaust dur-
ing aerosol sampling. The wind-sector controller system was configured to allow col-
lection of marine aerosol samples only when the relative wind directions were within
plus or minus 100◦ relative to the ship’s bow and the relative wind speeds were over15

1 ms−1 during the cruise. The flow rate was approximately 13 m3 h−1 and the total sam-
pling time was 1–3 days, representing a total sampling air volume of 310–930 m3. After
sampling, the filter was stored frozen at −24 ◦C prior to chemical analysis. Deployment
blanks (n = 3) were obtained by placing Teflon filters in the aerosol sampler for 5 min
on idle systems (i.e. no airflow through the filters) and processed as other aerosol20

samples.
During the KH-08-2 cruise, number densities of ambient particles in four size frac-

tions of D > 0.3, 0.5, 1.0, and 2.0 µm were also measured continuously using an optical
particle counter (KC-01D, Rion Co., Inc). Meteorological parameters (i.e. wind speed,
wind direction, air temperature, sea temperature, dew point, and relative humidity) were25

continuously monitored by weather monitoring systems equipped on the research ves-
sel.
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2.2 Rainwater collection

Rainwater sampling was conducted on an event basis during the cruise. Rain samples
were collected with a 36.5 cm diameter polyethylene funnel fitted to a 500 ml polyethy-
lene bottle (Jung et al., 2011). Both the funnel and bottle were first soaked in detergent
(Contaminon B, Wako Pure Chemical Industries) for 24 h, then soaked in 1 N HCl for5

24 h, before being rinsed at least three times with Milli-Q water (> 18 MΩcm−1; Millipore
Co.) and finally dried in a drying oven (DK 600, Yamato, Japan) prior to deployment.
The rain sampler was put on the front of the upper deck of the ship, and was opened
just before or as soon as possible after precipitation. During rain collection, the relative
wind directions were monitored. If rain occurred when the relative wind directions were10

outside the ranges of the wind-sector controller, the rainwater was not collected. After
collection, the rain sampler was washed thoroughly with Milli-Q water and closed. The
rainwater samples were immediately separated into three aliquots. Two of the aliquots
were used for measurements of pH (Model 290A, Orion) and conductivity (Model 115,
Orion), respectively. When the amount of precipitation was less than 10 ml, pH and con-15

ductivity were not measured. The pH and conductivity meters were calibrated before
each measurement. Standard pH 4.01 and 7.00 buffer (Thermo Scientific) and conduc-
tivity/total dissolved solids (TDS) standard (1413 µScm−1, Thermo Scientific) solutions
were used for calibrations of the pH and conductivity meters, respectively. As the third
aliquot, remaining rainwater was sealed in pre-cleaned 100 ml high-density polyethy-20

lene (HDPE) bottles, and stored in a freezer at −24 ◦C prior to chemical analyses.
Procedural blanks (n = 3) for rainwater were collected by pouring 100 ml of Milli-Q wa-
ter through the clean funnel-bottle assembly. The procedural blanks were also treated
as other rainwater samples.

2.3 Sea fog water collection25

Sea fog water sampling was conducted on an event basis during the cruise. A fog wa-
ter sampler (FWG-400, Usui Co. Inc.) was used to collect sea fog water and put on
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the front of the upper deck of the ship. The fog water sampler is composed of a net of
Teflon strings (0.5 mm in diameter), a net holder and a 500 ml low-density polyethylene
(LDPE) bottle. Prior to deployment, both the net and the bottle were first soaked in the
detergent for 24 h, then soaked in a 1N HCl for 24 h, then rinsed at least three times
with Milli-Q water and finally dried. The net of Teflon strings and the LDPE bottle were5

set only during the sea fog occurrence and removed once sea fog event ceased. When
the ship sails the sea fog occurrence area, sea fog droplets collide with the strings
and drop along the strings into the 500 ml LDPE bottle beneath the strings (Sasakawa
et al., 2003). After collection, sea fog water samples were immediately separated into
three aliquots. Two of the aliquots were used for measurements of pH and conductivity,10

respectively. The third aliquot was sealed in pre-cleaned 100 ml high-density polyethy-
lene (HDPE) bottles, and stored in a freezer at −24 ◦C prior to chemical analyses.
Procedural blanks (n = 5) for sea fog water samples were collected by pouring 100 ml
of Milli-Q water through the clean net-bottle assembly. The procedural blanks were also
treated as sea fog water samples.15

Size distributions of sea fog droplets were measured with a fog monitor (FM-100,
Droplet Measurement Technologies). The fog monitor detects the number and size of
individual fog droplets with a diameter from roughly 2 µm up to 50 µm by the forward
scattering principle, and can classify droplets in up to 40 size classes (Klemm et al.,
2005). Liquid water content (LWC) for each of the 40 droplet size classes was computed20

based on an idealized mean volume of spherical droplets with aerodynamic diameter.
Total LWC was obtained from the sum of LWC for all size.

2.4 Chemical analysis

Aerosol, rainwater, and sea fog water samples were analyzed for major ionic and inor-
ganic N species (NH+

4 and NO−
3 ) using the method described in detail elsewhere (Jung25

et al., 2011). Briefly, aerosol samples were ultrasonically extracted using 50 ml of Milli-
Q water. The extraction solution was then filtered, as were the rainwater and sea fog
water samples, through a 13-mm diameter, 0.45-µm pore-size membrane filter (PTFE

19095
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syringe filter, Millipore Co.). The filtrates of aerosol extracts, rainwater, and sea fog
water samples were analyzed by ion chromatography (IC; Dionex-320, Thermo Scien-
tific Dionex) for anions (Cl−, MSA, NO−

3 , and SO2−
4 ) and cations (Na+, NH+

4 , K+, Mg2+,

and Ca2+). The instrumental detection limits were: Cl− 0.035 µM, MSA 0.031 µM, NO−
3

0.1 µM, SO2−
4 0.065 µM, Na+ 0.11 µM, NH+

4 0.17 µM, K+ 0.16 µM, Mg2+ 0.15 µM, and5

Ca2+ 0.16 µM.
Non sea-salt (nss-) concentrations of some ionic components were calculated by

subtracting the component’s sea-salt-derived (ss-) concentration from its total concen-
tration. In this study, it was assumed that all Na+ in aerosols, rainwater and sea fog
water were derived from sea-salt. Contributions from sea-salt were calculated from the10

Na+ concentration in aerosols, rainwater or sea fog water using the mole ratio of the
component of interest to Na+ in seawater (Keene et al., 1986).

2.5 Backward trajectory analysis

Air mass backward trajectories (AMBTs) provide a better understanding of air flow
and long-range transport of aerosols. In particular, AMBTs have been used to iden-15

tify the origin of primary aerosols collected far away from their source region (Chi-
apello et al., 1997). In this study, 7-day AMBTs were calculated from the National
Oceanic and Atmospheric Administration (NOAA) GDAS (Global Data Assimilation
System) database using the Hybrid Single-Particle Lagrangian Integrated Trajectories
(HY-SPLIT) model (NOAA Air Resources Laboratory, http://www.arl.noaa.gov/ready/20

hysplit4.html). AMBTs were performed at 500, 1000, and 1500 m a.g.l. Chen and
Siefert (2004) reported that atmospheric aerosols may not follow the resulting trajecto-
ries because of scavenging processes and gravitational settling; however, the AMBTs
provide useful background data on airstreams and the potential origins of the source
of the sampled air mass.25
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3 Results and discussion

3.1 Meteorological conditions associated with sea fog occurrences

Sea fog typically occurs as a result of warm marine air advection over a region where
a cold ocean current affects (Lewis et al., 2004). During the sampling period, sea fog
occurred predominantly when the dominant wind direction was southerly and/or south-5

westerly and air temperature dropped to its dew point (Fig. 2). This result indicates that
the warm and humid air masses form the low and middle latitudes of the North Pacific
Ocean passed over the cold sea surface of the Northwestern North Pacific Ocean and
they were cooled down to a saturation temperature. Sea fog events, however, did not
occur when sea surface temperature was higher than air temperature, although the10

dominant wind direction was southerly, suggesting that the difference between the air
and sea surface temperatures is a key factor controlling sea fog formation (Cho et al.,
2000).

According to previous studies (Cho et al., 2000; Fu et al., 2006; Tokinaga and Xie,
2009), the difference between air and sea surface temperatures is often observed to15

be positive in frequent sea fog occurrence regions, since the relatively cold sea surface
temperature stabilizes the lower atmosphere, making a favorable condition for sea fog
formation. Therefore, the meteorological conditions during the sea fog sampling period
show that advection of warm and humid air masses from the subtropical North Pacific
Ocean and the positive difference between air and sea surface temperatures make20

favorable conditions for sea fog occurrence over the subarctic Western North Pacific
Ocean.

3.2 Effect of sea fog on particle number density

Temporal variations of total LWC, particle number densities for aerosols in the range of
0.3–2.0 µm, and fog droplet size distribution for each of the 40 droplet size classes dur-25

ing the cruise are shown in Fig. 3. The total LWC varied from < 0.2–140 mgm−3. Mean
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particle number densities during non sea fog events were 25±31 cm−3 for aerosols
in the range of 0.3 < D < 0.5µm, 2.6±3.0 cm−3 for 0.5 < D < 1.0µm, 0.53±0.70 cm−3

for 1.0 < D < 2.0µm, and 0.17±0.27 cm−3 for D > 2.0µm. In comparison, the mean
particle number densities during sea fog events decreased by 4 % (mean particle
number density 24±20 cm−3) for aerosols in the range of 0.3 < D < 0.5µm, 12 %5

(2.3±3.1 cm−3) for 0.5 < D < 1.0µm, 55 % (0.24±0.52 cm−3) for 1.0 < D < 2.0µm, and
78 % (0.038±0.091 cm−3) for D > 2.0µm. The differences of mean particle number
densities between two periods were statistically significant (t-test, p < 0.05), except
that for aerosols in the range of 0.3 < D < 0.5µm. In addition, the sea fog droplet size
distributions during sea fog events were shifted towards the larger droplet sizes. These10

results suggest that particles with diameters larger than 0.5 µm could act preferentially
as CN for sea fog droplets (Sasakawa et al., 2003), and that the formation of liquid
droplets by condensation of water vapor on pre-existed particles acting as CN leads to
the acceleration of particle removal from the atmosphere (Pandis and Seinfeld, 1990).

3.3 Chemical composition of aerosols, rainwater, and sea fog water15

Sea-salts (Na+, Cl−, and ss-ions) were the dominant components in aerosols, rainwa-
ter, and sea fog water, representing approximately 72 %, 61 %, and 86 % of total ionic
concentration, respectively (Fig. 4 and Table 1). In aerosols and sea fog water, the
mole equivalent ratios of Cl−/Na+ were slightly lower than that in seawater (Table 2),
suggesting that Cl− depletion occurred through the volatilization of hydrogen chloride20

(HCl) from sea-salt particles that became acidified by the incorporation of nitric (HNO3)
and/or sulfuric (H2SO4) acids in the marine atmosphere (Graedel and Keene, 1995;
Andreae and Crutzen, 1997), and that the acidified sea-salt particles acted as CN of
sea fog droplets (Sasakawa and Uematsu, 2002; Raja et al., 2008). Furthermore, the
Mg2+/Na+, K+/Na+, and Ca2+/Na+ ratios in aerosols and sea fog water were similar25

or slightly higher than those in seawater, suggesting that most of Mg2+, K+ and Ca2+

in aerosols and sea fog water were derived from sea-salt particles.
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Two volcanoes on the Aleutians erupted during the cruise. The eruption at Okmok
Volcano (53.40◦ N, 168.17◦ W) started on 12 July 2008 and ended in late August
2008 (Larsen et al., 2009; Lu and Dzurisin, 2010), and Kasatochi Volcano (52.18◦ N,
175.51◦ W) became active on 7 August 2008 (Schmale et al., 2010). During the sam-
pling period, air masses originated from the Asian continent and the Kamchatka Penin-5

sula, indicating that these air masses were likely affected by anthropogenic and crustal
sources as well as the eruptions of two volcanoes (Fig. 5a–c).

Unlike aerosol and sea fog water samples, the Cl−/Na+, Mg2+/Na+, K+/Na+, and
Ca2+/Na+ ratios in rainwater were much higher than those in seawater (Table 2). At-
mospheric HCl are derived from sea-salt particles, volcanoes, and anthropogenic ac-10

tivities (e.g. fossil fuel combustion and incineration) (Graedel and Keene, 1995). Gioda
et al. (2011) observed high Cl−/Na+ ratios in rainwater (2.2) and cloud water (3.2),
collected in Puerto Rico from December 2004 to March 2007, when ash from the
Soufriere Hills volcano reached the sampling site. During the collection of rainwater
samples, air masses originated from the Asian continent or the subtropical Western15

North Pacific Ocean and thereafter swept over large regions of the Korean Peninsula
and/or the Japanese Islands, indicating that these air masses were most likely affected
by strong anthropogenic and crustal sources rather than by the influences of two vol-
canoes (Fig. 5b). The high Cl−/Na+ ratio in rainwater thus is likely due to scaveng-
ing of HCl derived from sea-salt particles and/or anthropogenic source by rainwater.20

Sasakawa and Uematsu (2002) reported that NH+
4/nss-Ca2+ ratio in rainwater (0.53)

collected over the Northwestern North Pacific from 15–29 July 1998, was two orders of
magnitude lower than that in sea fog water (11), reflecting that mineral particles, such
as calcium carbonate (CaCO3), mainly existed over higher altitudes than those where
sea fog appeared. While sea fog occurs near the sea surface (Fu et al., 2006) and25

scavenges only lower atmospheric substances (Ali et al., 2004), precipitation removes
the substances existing in the whole air column in and below clouds (Deboudt et al.,
2004). The high Mg2+/Na+, K+/Na+ and Ca2+/Na+ ratios in rainwater therefore sug-
gest that most of these ionic species in rainwater were derived from other sources, such
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as crustal materials and biomass burning, and that scavenging processes of aerosols
by sea fog are different to those by rain.

3.4 The pH of rainwater and sea fog water

The pH values of rainwater and sea fog water varied from 3.5–4.5 and 3.4–5.9, with
averages of 4.1±0.37 and 4.2±0.64, respectively (Table 1). Several compounds, such5

as H2SO4, HNO3, HCl, NH3, and CaCO3, contribute to the acid-base balance of rain-
water and fog water (Millet et al., 1996).

The mean nss-Cl− concentration in rainwater was two orders of magnitude greater
than those of nss-SO2−

4 and NO−
3 (Table 1), suggesting that nss-Cl− exerted a larger

influence on acidity of rainwater collected over the subarctic Western North Pacific10

Ocean. Assuming the nss-SO2−
4 , NO−

3 , and nss-Cl− in rainwater existed in the form of
free acids, the expected pH of rainwater was 3.4, whereas the mean pH value mea-
sured in rainwater was 4.1. This discrepancy indicates that rainwater had experienced
some neutralization. From the difference between the sum of nss-SO2−

4 , NO−
3 , nss-Cl−,

and the mean H+ concentration obtained from the mean pH value, it was estimated that15

approximately 61 % of these acidic substances was in neutralized forms. The mean
concentrations of nss-Ca2+ and nss-Mg2+ in rainwater were 15 times and 3.8 times
higher than that of NH+

4 , respectively (Table 1). Moreover, the mole equivalent ratios
of NH+

4/nss-Ca2+ and NH+
4/nss-Mg2+ in rainwater were lower than 1, suggesting that

nss-Ca2+ and nss-Mg2+ played key roles in neutralization of rainwater acidity.20

In sea fog water, nss-SO2−
4 and NO−

3 were the dominant acidic species (Fig. 4 and Ta-

ble 1). The mole equivalent ratio of NO−
3/nss-SO2−

4 in sea fog water was 0.57 (Table 2).

This result suggests that nss-SO2−
4 was the major component to lower the pH of sea

fog, and that the pH of sea fog water was controlled by nss-SO2−
4 derived mainly from

marine biological activity than that of rainwater since mean concentrations of methane-25

sulfonic acid (MSA) and nss-SO2−
4 in sea fog water were an order of magnitude greater

than those in rainwater (Table 1). For sea fog water, it was estimated that approximately
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48 % of nss-SO2−
4 and NO−

3 was in neutralized forms. While nss-Ca2+ and nss-Mg2+

were the dominant neutralization substances in rainwater, NH+
4 was the major basic

component in sea fog water (Fig. 4 and Table 2), suggesting that neutralization of sea
fog water was predominantly caused by NH+

4 , and that nss-SO2−
4 and NO−

3 in sea fog
water were probably in fully or partially neutralized forms, such as ammonium sulfate5

((NH4)2SO4), ammonium bisulfate (NH4HSO4) and ammonium nitrate (NH4NO3).

3.5 Concentrations of NH+
4 and NO−

3 in aerosols, rainwater, and sea fog water

3.5.1 Aerosols

Total concentrations of NH+
4 and NO−

3 in bulk (fine+ coarse) aerosols ranged from 2.9–

9.8 neqm−3 and 0.64–5.6 neqm−3, respectively (Fig. 6a and b). Mean concentrations10

of aerosol inorganic N species were 5.6±1.9 neqm−3 for NH+
4 and 2.5±1.4 neqm−3

for NO−
3 , accounting for ∼70 % by NH+

4 and ∼30 % by NO−
3 of aerosol total inorganic

N (i.e. TIN=NH+
4 + NO−

3 ) (Table 1). Ammonium is primarily associated with fine mode
aerosol and produced by heterogeneous reactions involving NH3 derived from inten-
sive agricultural activity (Aneja et al., 2001), biomass burning (Andreae and Merlet,15

2001) and a relatively weak marine source (Jickells et al., 2003). It is also known that
NO−

3 in the marine atmosphere is predominantly associated with coarse mode aerosol
as a result of a chemical reaction between HNO3 derived primarily from NOx emissions
from combustion processes and sea-salt (Andreae and Crutzen, 1997). Mean percent-
ages of total aerosol concentration in the fine mode for NH+

4 and NO−
3 were ∼ 84% and20

∼36 %, respectively. These values were similar to the results of Nakamura et al. (2005),
who reported the size distributions of NH+

4 and NO−
3 in aerosols collected over the East

China Sea.
During the sampling period, over a dozen sea fog events occurred and aerosol

samples, A03–A06 and A08–A09, were largely affected by these fog appearance. As25

shown in Fig. 6a and b, NO−
3 , which mainly existed in coarse mode aerosols, was
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more efficiently scavenged by sea fog than NH+
4 , showing that coarse particles act

predominantly as CN of sea fog droplets rather than the fine particles (see Sect. 3.6).
Sasakawa and Uematsu (2002) reported that mean concentrations of NH+

4 and NO−
3 in

aerosols collected over the Northwestern North Pacific Ocean from 15–29 July 1998,
were 11±2.9 neqm−3 and 3.7±2.2 neqm−3, respectively. In comparison, the mean5

aerosol NH+
4 and NO−

3 concentrations in this study were a factor of 2 and 1.5 lower than
their results, respectively. The low mean NH+

4 and NO−
3 concentrations in aerosols thus

are likely due to strong influences of sea fog.

3.5.2 Rainwater

When sea fog and rain events occurred simultaneously, only rainwater was collected10

(Fig. 3). That sample was then considered as a rainwater sample (i.e. rainwater sample
number 3 and 4), although the rainwater sample contains sea fog water as well as rain-
water, since sea fog water is deposited by rainwater during that time. Concentrations of
NH+

4 and NO−
3 in rainwater ranged from 4.1–55 µeql−1 and 1.2–18 µeql−1, respectively

(Fig. 6c and d). Mean concentrations of inorganic N species were 25±20 µeql−1 for15

NH+
4 and 7.9±6.9 µeql−1 for NO−

3 (Table 1). These values were in the range of the

observed NH+
4 (1.7–67 µeql−1) and NO−

3 (2.4–26 µeql−1) concentrations in rainwater
collected over the Northwestern North Pacific Ocean from 15–29 July 1998 (Sasakawa
and Uematsu, 2002). Inorganic N in rainwater was composed of ∼77 % NH+

4 and ∼23 %
NO−

3 (mean values), suggesting that NH+
4 is more abundant in rainwater collected over20

the subarctic Western North Pacific Ocean, and that it is a more important inorganic N
species supplied by wet deposition.

3.5.3 Sea fog water

Concentrations of NH+
4 and NO−

3 in sea fog water ranged from 4.2–45 µeql−1 and 1.8–

139 µeql−1, respectively (Fig. 6e and f). Contributions of NH+
4 and NO−

3 to TIN in sea fog25
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water were found to represent ∼39 % (mean concentration 22±13 µeql−1) and ∼61 %
(mean concentration 50±40 µeql−1), respectively (Table 1). Sasakawa and Uematsu
(2002) reported that mean NH+

4 and NO−
3 concentrations in sea fog water collected

over the Northwestern North Pacific Ocean from 15–29 July 1998, were 25±17 µeql−1

and 25±22 µeql−1, respectively. The mean NH+
4 concentration observed in this study5

was comparable to their result; however, the mean concentration of NO−
3 was a factor

of 2 higher than their result for NO−
3 . This different concentration is likely attributable to

the duration, frequency of sea fog events, and changes in the quality of air mass.

3.6 Difference of scavenging process between rain and sea fog

Mean concentrations of NO−
3 , MSA, and nss-SO2−

4 in sea fog water were higher than10

those in rainwater (Tables 1 and 3), suggesting that they were more effectively scav-
enged by sea fog droplets with their higher surface-to-volume ratios and longer atmo-
spheric residence times (Sasakawa and Uematsu, 2002, 2005; Gioda et al., 2011).

The sea fog water/rainwater ratio for NH+
4 was 0.88 (Table 3), suggesting that NH+

4

was not scavenged by sea fog as efficiently as NO−
3 , MSA, and nss-SO2−

4 . The mean15

NO−
3 concentration in sea fog water was 6.3 times higher than that in rainwater,

whereas the mean NH+
4 concentration in sea fog water was similar to that in rainwa-

ter. Sasakawa et al. (2003) reported that coarse particles (e.g. sea-salt particles and
NaNO3) act predominantly as CN of sea fog droplets rather than NH+

4 and nss-SO2−
4

particles, such as (NH4)2SO4 and NH4HSO4 since aerosol NH+
4 and nss-SO2−

4 are20

largely associated with the fine mode (D < 2.5µm) particles (Nakamura et al., 2005). In
addition, NH3 readily reacts with acids in the atmosphere to form NH+

4 aerosols that can
act as cloud CN (Quinn et al., 1987). In this study, it was observed that larger particles
(D > 0.5µm) preferentially became activated and the fog droplet size distribution was
shifted towards the larger droplet sizes (Fig. 3), and that NH+

4 and NO−
3 were largely25

associated with fine and coarse mode aerosols, respectively (Fig. 6a and b). Therefore,
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higher NO−
3 concentration in sea fog water than in rainwater is likely due to preferential

behaviors of coarse particles as CN in sea fog.
While MSA is formed exclusively from dimethylsulfide (DMS) produced by phyto-

plankton in the ocean, nss-SO2−
4 has a variety of sources, including DMS oxidation,

volcanic and industrial sulfur emissions (Gondwe et al., 2003). Dimethylsulfide is emit-5

ted into the atmosphere, where it undergoes chemical transformation to eventually
form gaseous (e.g. MSA and SO2) and/or particulate (e.g. MSA and nss-SO2−

4 ) sul-
fur species (e.g. Charlson et al., 1987; Bardouki et al., 2003). Mean concentrations of
MSA and nss-SO2−

4 in sea fog water were 15 times and 13 times higher than those in
rainwater, respectively (Tables 1 and 3). During the sampling period, SeaWiFS satellite10

images revealed high chlorophyll a levels (http://oceancolor.gsfc.nasa.gov) in the sub-
arctic Western North Pacific Ocean (see Supplement, Fig. S1). Considering sea fog
occurs near the sea surface where DMS is emitted, these results suggest that sea fog
scavenged biogenic sulfur species more effectively than rain (Sasakawa and Uematsu,
2005).15

If aerosol particles exert the primary influence as CN of sea fog droplets, the mole
equivalent ratios between aerosols and sea fog water would be similar (Sasakawa and
Uematsu, 2002; Gioda et al., 2011). The mole equivalent ratio of NO−

3/Na+ in sea fog
water was higher than that in aerosols (Table 2). This result suggests that not only
aerosol NO−

3 , but also gaseous HNO3 was scavenged by sea fog water. Nitric acid is20

highly soluble in water. Once a large amount of liquid water has amassed, the gas
phase HNO3 is rapidly dissolved (Fahey et al., 2005). In order to estimate the frac-
tion of gaseous HNO3 scavenged by sea fog water, the NO−

3/Na+ ratios in aerosols
were compared to those in sea fog water (Fig. 7). In 8 sea fog samples, the higher
NO−

3/Na+ ratios than in aerosols were observed when air masses originated from the25

Asian continent or from the subtropical Western North Pacific Ocean circulated around
the vicinity of the Japanese Islands and thereafter reached the sea fog sampling sites
(Fig. 5c). In this study, it was estimated that 25–94 % (mean 74 %) of NO−

3 in the 8 sea
fog water samples was derived from the dissolution of HNO3, suggesting that sea fog
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over the subarctic Western North Pacific Ocean is an important removal mechanism for
gas phase HNO3. In comparison, the NH+

4/Na+ ratios in sea fog water for all periods
were lower than those in aerosols (Fig. S2), indicating that sea-salt particles exerted
a greater influence on the NH+

4/Na+ ratios in sea fog water due to condensation oc-
curred preferably on coarse particles as mentioned above.5

3.7 Deposition flux estimates

3.7.1 Dry deposition

Dry deposition fluxes (Fd) were calculated from aerosol concentrations (Ca) in the
coarse (c) and fine (f) modes and dry deposition velocities (Vd) for each size mode
(Duce et al., 1991; Baker et al., 2007):10

Fd = Cc
a × V c

d +Cf
a × V f

d (1)

Here, dry deposition velocities of 2 cms−1 for coarse mode and 0.1 cms−1 for fine mode
were used since these two values are known to be best estimates based on experimen-
tal and model studies (e.g. Duce et al., 1991; Baker et al., 2003; Nakamura et al., 2005).
This estimate results in an uncertainty of a factor of 2–3 in the calculated flux, since15

deposition velocity includes terms for gravitational settling, impaction and diffusion of
particles, all of which vary in complex functions of particle size and meteorological
conditions (e.g. wind speed and relative humidity) (Duce et al., 1991).

3.7.2 Wet deposition

Wet deposition fluxes (Fw) were estimated from the concentration of the species of20

interest in rainwater (Cr) and the precipitation rate (P ) (Baker et al., 2010):

Fw = Cr × P (2)
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The precipitation rate was calculated from the monthly averaged precipitation rate
(mmd−1) using the CMAP model output (http://www.cdc.noaa.gov/cdc/data.cmap.html)
(Xie and Arkin, 1997). Similar to estimates for dry deposition flux, the choice of precip-
itation rates based on limited data causes the greatest uncertainty in wet deposition
flux estimates, particularly in the open ocean (Spokes et al., 2000). However, Baker5

et al. (2010 and references therein), who used the same method for estimating wet de-
position flux, argued that the uncertainty arising from selection of precipitation rate is
minor since the precipitation rate data agreed relatively well with other studies in terms
of total rainfall amount.

3.7.3 Sea fog deposition10

Sea fog deposition fluxes (Ff) were estimated by multiplying sea fog water flux (Ffw) of
each event by the concentration of the species of interest in each sea fog water sample
(Cf) (Thalmann et al., 2002):

Ff = Ffw ×Cf (3)

The Ffw was estimated by Eq. (4), where LWC(Dp) represents the mean LWC for each15

of the 40 droplet size classes during each sea fog event and V (Dp) indicates the depo-
sition velocity for sea fog droplets with an aerodynamic diameter (Klemm et al., 2005).
The sum of sea fog water flux for all size classes then yielded the Ffw.

Ffw =
∑

LWC(Dp)× V (Dp) (4)

Size distribution of mean LWC for each sea fog event is shown in Fig. 8. For V (Dp),20

the modeled values reported by Matsumoto et al. (2011), who calculated the de-
position velocities for the particles with diameters larger than 3 µm, were used (i.e.
4.69 cms−1 for 3 < D < 5µm, 10.1 cms−1 for 5 < D < 10µm, 13.5 cms−1 for 10 < D <
20µm, 15.6 cms−1 for 20 < D < 30µm and 19.0 cms−1 for 30 < D < 50µm). This ambi-
guity in values used for sea fog deposition velocities leads to the greatest uncertainty25

in sea fog flux estimates.
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In this study, it was assumed that all sea fog droplets measured with the fog monitor
were deposited to the sea surface without changes in size distribution of LWC; how-
ever, due to evaporation and coalescence of sea fog droplets, their size and deposition
velocities are subject to change, suggesting that the deposition velocities used here
leads to the uncertainty in sea fog deposition flux estimates. The fog water sampler5

used in this study has a 50 % efficiency collection diameter of 6 µm under flow rate
3 ms−1 (Minami and Ishizaka, 1996). It is difficult, however, to calculate the precise
collection efficiency of this fog sampler in this study, because the relative wind direc-
tions and the relative wind speeds change extremely with the movements of the ship
(Sasakawa and Uematsu, 2005). Hence, the estimates of sea fog deposition fluxes in10

this study contain the uncertainties that are related to the changes in size distribution
of LWC and the collection efficiency.

3.8 Contributions of dry, wet, and sea fog deposition to atmospheric input of
nitrogen to the subarctic Western North Pacific Ocean

Temporal variations of dry, wet, and sea fog deposition fluxes for NH+
4 and NO−

3 dur-15

ing the sampling period are shown in Fig. 9. The estimated dry deposition fluxes for
atmospheric inorganic N species ranged from 0.67–3.1 µmolm−2 d−1 for NH+

4 and from
0.62–8.6 µmolm−2 d−1 for NO−

3 , contributing ∼43 % by NH+
4 and ∼57 % by NO−

3 to the
dry deposition flux for TIN. Mean dry deposition fluxes for NH+

4 and NO−
3 were esti-

mated to be 1.9±0.67 µmolm−2 d−1 and 3.0±2.2 µmolm−2 d−1, respectively. Although20

the mean concentration of total NH+
4 in aerosols collected over the subarctic West-

ern North Pacific Ocean was approximately 2 times higher than that of total NO−
3 (Ta-

ble 1), inorganic N supplied to surface waters by atmospheric dry deposition was mainly
from NO−

3 that was largely associated with coarse mode particles, since fluxes to the
ocean are dominated by the coarse mode, resulting in NO−

3 being deposited much25

more rapidly (Fig. 6a and b).
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Wet deposition of atmospheric inorganic N was highly variable from one event to
the next depending on the concentrations of NH+

4 and NO−
3 in the precipitation as well

as the frequency and amount of precipitation. Wet deposition fluxes of atmospheric
inorganic N species ranged from 3.5 to 98 (mean 25±35) µmolm−2 d−1 for NH+

4 and
from 1.0 to 32 (mean 8.0±12) µmolm−2 d−1 for NO−

3 , accounting for ∼ 77% by NH+
4 and5

∼ 23% by NO−
3 of TIN from wet deposition flux. While NO−

3 was the dominant inorganic
N species in dry deposition, inorganic N supplied to surface waters by atmospheric wet
deposition was predominantly by NH+

4 (72–89 % of the wet deposition fluxes for TIN).
Likewise wet deposition, sea fog deposition of atmospheric inorganic N was highly

variable depending on the size distribution of LWC, the amount of LWC, and the dura-10

tion of sea fog event as well as the concentrations of NH+
4 and NO−

3 in the sea fog water.
The estimated sea fog deposition fluxes for atmospheric inorganic N species ranged
from 0.18–5.2 µmolm−2 d−1 for NH+

4 and from 0.13–22 µmolm−2 d−1 for NO−
3 , contribut-

ing ∼39 % by NH+
4 and ∼61 % by NO−

3 to the sea fog deposition flux for TIN. Mean sea

fog deposition fluxes for NH+
4 and NO−

3 were estimated to be 2.1±1.9 µmolm−2 d−1
15

and 5.7±6.9 µmolm−2 d−1, respectively, indicating that inorganic N supplied to surface
waters by sea fog deposition was mainly by NO−

3 , since aerosol NO−
3 and HNO3 were

scavenged more effectively by sea fog.
While dry deposition is a continuous process occurring at all times over all surfaces,

wet and sea fog deposition are highly episodic. The relative importance of dry, wet,20

and sea fog deposition obviously varies greatly on short time scales, and varies spa-
tially on longer time scales with global rainfall patterns (Jickells, 2006) and trends in
fog frequency (Gultepe et al., 2007). Mean total (dry+wet+ sea fog) deposition flux
of atmospheric TIN in the subarctic Western North Pacific Ocean was estimated to
be 46±48 µmolm−2 d−1, with 72 % of this in the form of wet deposition (Table 4). This25

indicates that wet deposition plays an important role in the supply of atmospheric in-
organic N to the subarctic Western North Pacific Ocean compared to dry and sea fog
deposition, although the relative contributions are highly variable. The estimate of the
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proportion of atmospheric N input via wet deposition were comparable to previously
published values: the Pacific 86 % (Duce et al., 1991), the Atlantic 78–85 % (Baker
et al., 2010), and the world oceans 71 % (Duce et al., 1991).

Fog can lead to substantial N deposition if the event persists long enough (several
hours) with sufficient LWC (dense fog), particularly for those formed in continental air5

masses (Jordan and Talbot, 2000). Although the mean contribution of sea fog deposi-
tion to total atmospheric TIN input to the subarctic Western North Pacific Ocean was
∼ 17% (Table 4), in some cases, atmospheric TIN deposition flux via sea fog exceeded
the combined dry and wet deposition flux of TIN (Fig. 9), suggesting that sea fog can
deposit as much N as a high N deposited by rain event, and that sea fog is an impor-10

tant transfer process for atmospheric inorganic N from the marine atmosphere to the
subarctic Western North Pacific Ocean.

3.9 Potential impact of atmospheric inorganic nitrogen deposition on primary
production over the subarctic Western North Pacific Ocean

The potential impact of atmospheric deposition on marine ecosystems depends on the15

nutrient status of the receiving waters, and is related to both the total amount and ratio
of atmospherically supplied nutrients and to the limiting nutrient for the existing local
water column (Baker et al., 2006). It is known that NH+

4 and NO−
3 can be readily utilized

by a variety of aquatic microorganisms (Gilbert et al., 1991). In order to evaluate the
impact of atmospheric N on the marine ecosystem, potential primary production was20

estimated using the result for total deposition flux of TIN and the Redfield C/N ratio of
6.6. Assuming that phytoplankton can take up all the N coming from atmospheric depo-
sition with no losses, and that there is no co limitation by other nutrients (i.e. P and Fe),
total mean deposition flux of atmospheric TIN over the subarctic Western North Pacific
Ocean (46±48 µmolm−2 d−1) was found to be maximally responsible for the carbon up-25

take of 300±320 µmolCm−2 d−1. Elskens et al. (2008) reported that the integrated new
primary production in the upper part of the euphotic zone (0–50 m) at station K2 (47◦ N,
161◦ E) in the subarctic Western North Pacific Ocean from 30 July 2005 to 18 August
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2005 ranged from 67–119 mgCm−2 d−1 (5.6–9.9 mmolCm−2 d−1). Wong et al. (2002)
estimated that the annual new production from the surface (upper 50 m) of the sub-
arctic Western North Pacific Ocean, which covers the sampling area of this study, to
be 32.8–82.8 gCm−2 yr−1. To facilitate evaluation, we have converted gCm−2 yr−1 units
for the annual new production reported by Wong et al. (2002) to the µmolCm−2 d−1

5

units used in this study. Based on these, the result of this study suggests that inorganic
N deposited to the subarctic Western North Pacific Ocean from the atmosphere can
support 1.6–5.3 % of the new primary production. Atmospheric inorganic N deposition,
however, could be an important N source in the ocean where sporadic atmospheric N
deposition events caused by the transport of the continental dust affect and the supply10

of deep nutrient-rich water is restricted by the stratification of the surface ocean that is
enhanced by global warming.

4 Conclusions

The subarctic Western North Pacific Ocean (> 40◦ N) has a high frequency of sea
fog, with a maximum of ∼50 % during the summertime period (June–August). The fog15

deposition is an important transfer process for atmospheric substances from the atmo-
sphere to the biosphere. It is therefore suggested that sea fog may play a key role in
supplying atmospheric nutrients to this region. Nevertheless, no study has been car-
ried out over the subarctic Western North Pacific Ocean to quantify sea fog deposition
flux for atmospheric N. This is the first study to estimate atmospheric inorganic N fluxes20

via dry, wet, and sea fog deposition simultaneously over the subarctic Western North
Pacific Ocean. The mean dry, wet, and sea fog deposition fluxes for TIN were esti-
mated to be 4.9±2.6 µmolm−2 d−1, 33±47 µmolm−2 d−1, and 7.8±8.7 µmolm−2 d−1,
respectively. Wet deposition delivered more atmospheric inorganic N to the subarctic
Western North Pacific Ocean than dry and sea fog deposition, contributing ∼72 % to25

total deposition flux for TIN (46±48 µmolm−2 d−1), although the relative contributions
are highly variable.
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The mean contribution of sea fog deposition to total deposition flux for TIN was ∼
17%. Despite the relatively lower contribution of sea fog deposition, in some cases,
atmospheric inorganic N input via sea fog deposition exceeded the combined dry and
wet deposition fluxes. Thus, it is suggested that sea fog can result in substantial N
deposition if the event persists long enough and has sufficient LWC (dense sea fog),5

and that ignoring sea fog deposition would lead to underestimate of the total influx of
atmospheric inorganic N into the subarctic Western North Pacific Ocean, especially in
summer periods.

A schematic diagram of atmospheric inorganic N input to the subarctic Western
North Pacific Ocean via dry, wet, and sea fog deposition is shown in Fig. 10. In dry10

deposition, NO−
3 was the dominant inorganic N species, accounting for ∼57 %. This

reflects higher deposition velocity of NO−
3 than that of NH+

4 since NO−
3 is largely associ-

ated with coarse mode particles in the marine atmosphere. In comparison, inorganic N
supplied to surface waters by atmospheric wet deposition was predominantly by NH+

4
(72–89 % of the wet deposition fluxes for TIN), suggesting that NH+

4 is more important15

inorganic N species supplied by wet deposition over the subarctic Western North Pa-
cific Ocean. The contributions of NH+

4 and NO−
3 to the sea fog deposition flux for TIN

were ∼39 % and ∼61 %, respectively, indicating that sea fog scavenged more effec-
tively not only coarse mode particles (e.g. sea-salt particles and NaNO3) that acted as
CN of sea fog droplets, but also gaseous HNO3.20

In this study, atmospheric inorganic N input via dry, wet, and sea fog deposition
to the subarctic Western North Pacific Ocean was estimated by simplified calculation
(e.g. using assumption for sea fog water flux) during limited sampling period in the
summer, but these results contributed to the understanding of atmospheric N cycle
in open ocean environment. Further studies, however, are required to understand the25

biogeochemical cycles of N more clearly and should focus on long-term monitoring of
atmospheric reactive N species, including organic N, in the subarctic Western North
Pacific Ocean.
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Supplementary material related to this article is available online at:
http://www.atmos-chem-phys-discuss.net/12/19089/2012/
acpd-12-19089-2012-supplement.pdf.
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Table 1. Mean concentrations of major ionic species in aerosols (n = 11), rainwater (n = 7), and
sea fog water (n = 15) collected over the subarctic Western North Pacific during the cruisea.

Aerosol (neqm−3) Rain (µeql−1) Sea fog (µeql−1)
Mean Stdb nc Mean Stdb nc Mean Stdb nc

pH – – – 4.1 0.37 5 4.2 0.64 15
Na+ 33 22 11 580 820 7 390 570 15
NH+

4 5.6 1.9 11 25 20 7 22 13 15
K+ 0.59 0.46 11 19 20 7 9.3 13 15
Mg2+ 5.9 4.3 11 220 290 7 83 130 15
Ca2+ 1.8 1.2 11 400 540 7 20 27 15
Cl− 28 25 11 1100 1200 7 400 580 15
NO−

3 2.5 1.4 11 7.9 6.9 7 50 40 15

SO2−
4 22 8.3 11 66 82 7 120 71 15

MSA 0.62 0.50 11 0.42 0.69 6 6.2 6.7 15
nss-SO2−

4 18 9.0 11 5.5 6.9 5 72 58 14
nss-K+ 0.068 0.10 9 7.0 7.8 7 1.7 1.5 14
nss-Ca2+ 0.66 0.57 11 380 520 7 4.6 5.2 12
nss-Mg2+ 0.12 0.35 2 95 160 5 1.1 2.3 5
nss-Cl− – – – 420 610 7 – – –

a Negative values that arise for non sea-salt ionic species as a result of analytical uncertainty and samples where
concentration of each ionic component was below the detection limit have been included in the calculation of the
average as 0.
b Std represents standard deviation.
c Sample number of each ionic component detected (or calculated) in aerosols, rainwater, and sea fog water.
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Table 2. Mole equivalent ratios for major ionic species in aerosols, rainwater, and sea fog
watera.

Aerosol Rain Sea fog Seawaterb

Cl−/Na+ 0.79 2.7 1.0 1.17
Mg2+/Na+ 0.19 0.42 0.19 0.22
K+/Na+ 0.021 0.051 0.031 0.021
Ca2+/Na+ 0.073 1.2 0.069 0.044
SO2−

4 /Na+ 1.4 0.15 0.92 0.12
nss-SO2−

4 /Na+ 1.3 0.047 0.86 –
NO−

3/Na+ 0.099 0.029 0.43 –
NH+

4/Na+ 0.34 0.10 0.16 –
NO−

3/nss-SO2−
4 0.19 0.81 0.57 –

NH+
4/nss-Ca2+ 12 0.14 28 –

NH+
4/nss-Mg2+ 17 0.82 11 –

a The samples with negative value of non sea-salt ionic component were
excluded.
b Seawater ratios from Keene et al. (1986).
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Table 3. Sea fog water/rainwater ratios for major ionic species in terms of concentrations
(µeql−1).

Sea fog water/Rainwater

Na+ 0.67
NH+

4 0.88
ss-K+ 0.63
ss-Mg2+ 0.66
ss-Ca2+ 0.77
ss-Cl− 0.59
NO−

3 6.3
ss-SO2−

4 0.79
MSA 15
nss-SO2−

4 13
nss-K+ 0.24
nss-Ca2+ 0.012
nss-Mg2+ 0.012
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Table 4. Mean dry, wet, sea fog, and total deposition fluxes of NH+
4 and NO−

3 , and the contribu-
tion of each deposition to total inorganic N input in the subarctic Western North Pacific Ocean
during the cruise.

Dry deposition
(µmolm−2 d−1)

Wet deposition
(µmolm−2 d−1)

Sea fog deposition
(µmolm−2 d−1)

Total deposition
(µmolm−2 d−1)

NH+
4 1.9±0.67

(4.1 %)
25±35
(54 %)

2.1±1.9
(4.6 %)

29±35
(63 %)

NO−
3 3.0±2.2

(6.5 %)
8.0±12
(17 %)

5.7±6.9
(12 %)

17±14
(37 %)

TINa 4.9±2.6
(11 %)

33±47
(72 %)

7.8±8.7
(17 %)

46±48
(100 %)

a TIN represents total inorganic nitrogen. In this study, total inorganic nitrogen is defined as including NH+
4 and NO−

3 ;
i.e. TIN=NH+

4 +NO−
3 .
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Figure 1. Cruise track of Leg 1 of the KH-08-2. White circles, pink triangles, and blue 2 

diamonds indicate aerosol, rain, and sea fog sampling locations during the cruise, respectively. 3 

Each aerosol sampling start point represents the end of the previous sampling period. Dotted 4 

line indicates that no aerosol sampling was conducted. Black, pink, and blue numbers 5 

represent the sample numbers of aerosol, rain, and sea fog, respectively. 6 

7 

Fig. 1. Cruise track of Leg 1 of the KH-08-2. White circles, pink triangles, and blue diamonds
indicate aerosol, rain, and sea fog sampling locations during the cruise, respectively. Each
aerosol sampling start point represents the end of the previous sampling period. Dotted line
indicates that no aerosol sampling was conducted. Black, pink, and blue numbers represent
the sample numbers of aerosol, rain, and sea fog, respectively.
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Figure 2. Temporal variations of meteorological parameters (i.e., wind speed, wind direction, 2 

air temperature, sea surface temperature, dew point, and relative humidity) during the cruise. 3 

Sea fog (red circle) and rain (violet triangle) events indicate the occurrences of observed sea 4 

fog and rain events, respectively. 5 

6 

Fig. 2. Temporal variations of meteorological parameters (i.e. wind speed, wind direction, air
temperature, sea surface temperature, dew point, and relative humidity) during the cruise. Sea
fog (red circle) and rain (violet triangle) events indicate the occurrences of observed sea fog
and rain events, respectively.
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Figure 3. Temporal variations of total LWC, particle number densities for aerosols in four size 2 

groups, and LWC for each of the 40 droplet size classes during the cruise. The green and pink 3 

shaded areas indicate sea fog water and rainwater sampling durations, respectively. The black 4 

and pink numbers indicate sea fog and rainwater sample number, respectively. When sea fog 5 

and rain events occurred simultaneously, only rainwater sample was collected. Then that 6 

sample was considered as a rainwater sample (i.e., rainwater sample number 3 and 4). Since 7 

rainwater sample number 1 was collected on 30 July, it was not presented here. 8 

9 

Fig. 3. Temporal variations of total LWC, particle number densities for aerosols in four size
groups, and LWC for each of the 40 droplet size classes during the cruise. The green and
pink shaded areas indicate sea fog water and rainwater sampling durations, respectively. The
black and pink numbers indicate sea fog and rainwater sample number, respectively. When sea
fog and rain events occurred simultaneously, only rainwater sample was collected. Then that
sample was considered as a rainwater sample (i.e. rainwater sample number 3 and 4). Since
rainwater sample number 1 was collected on 30 July, it was not presented here.
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Figure 4. Mean contributions of each major ionic component to total ionic concentration in (a) 2 

aerosols (n = 11), (b) rainwater (n = 7), and (c) sea fog water (n = 15) collected over the 3 

subarctic western North Pacific Ocean during the cruise. 4 

5 

Fig. 4. Mean contributions of each major ionic component to total ionic concentration in (a)
aerosols (n = 11), (b) rainwater (n = 7), and (c) sea fog water (n = 15) collected over the sub-
arctic Western North Pacific Ocean during the cruise.
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Figure 5. The 168 h (7 days) air mass backward trajectories for starting altitudes of 500 2 

(triangle symbols), 1000 (circle symbols) and 1500 m (square symbols) above ground level 3 

(AGL) during the collections of aerosol (a), rain (b), and sea fog (c) samples were calculated 4 

from the Global Data Assimilation System (GDAS) database of the National Ocean and 5 

Atmospheric Administration (NOAA) and simulated by using the Hybrid Single-Particle 6 

Langrangian Integrated Trajectory (HY-SPLIT) model (web site 7 

http://www.arl.noaa.gov/ready/hysplit4.html). White circles, pink triangles and yellow 8 

diamonds indicate aerosol, rain and sea fog sampling locations during the cruise, respectively. 9 

Kasatochi and Okmok volcanoes are black diamonds.  10 

11 

Fig. 5. The 168 h (7 days) air mass backward trajectories for starting altitudes of 500 (triangle
symbols), 1000 (circle symbols) and 1500 m (square symbols) above ground level (a.g.l.) dur-
ing the collections of aerosol (a), rain (b), and sea fog (c) samples were calculated from the
Global Data Assimilation System (GDAS) database of the National Ocean and Atmospheric Ad-
ministration (NOAA) and simulated by using the Hybrid Single-Particle Langrangian Integrated
Trajectory (HY-SPLIT) model (web site http://www.arl.noaa.gov/ready/hysplit4.html). White cir-
cles, pink triangles and yellow diamonds indicate aerosol, rain and sea fog sampling locations
during the cruise, respectively. Kasatochi and Okmok Volcanoes are black diamonds.
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Figure 6. Concentrations of NH4
+ and NO3

– against sample I.D. in aerosols (a, b), rainwater (c, 2 

d), and sea fog water (e, f) collected over the subarctic western North Pacific Ocean. Solid 3 

triangle lines in (a) and (b) show the percentage of NH4
+ and NO3

– in fine (D < 2.5 μm) 4 

aerosol particles. 5 

6 

Fig. 6. Concentrations of NH+
4 and NO−

3 against sample I.D. in aerosols (a), (b), rainwater (c),
(d), and sea fog water (e), (f) collected over the subarctic Western North Pacific Ocean. Solid
triangle lines in (a) and (b) show the percentage of NH+

4 and NO−
3 in fine (D < 2.5µm) aerosol

particles.
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Figure 7. The mole equivalent ratios of NO3
–/Na+ in aerosols (red open bars) and sea fog 2 

water (gray bars) during the cruise. The widths of red open and gray bars indicate the 3 

sampling duration of aerosol and sea fog water samples, respectively. 4 

5 

Fig. 7. The mole equivalent ratios of NO−
3/Na+ in aerosols (red open bars) and sea fog water

(gray bars) during the cruise. The widths of red open and gray bars indicate the sampling
duration of aerosol and sea fog water samples, respectively.
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Figure 8. Variations of mean LWC for each sea fog event as a function of mean droplet 2 

diameter during the cruise. 3 

4 

Fig. 8. Variations of mean LWC for each sea fog event as a function of mean droplet diameter
during the cruise.
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Figure 9. Temporal variations of dry, wet, and sea fog deposition fluxes for NH4
+ and NO3

– 2 

over the subarctic western North Pacific Ocean during the cruise. 3 

4 

Fig. 9. Temporal variations of dry, wet, and sea fog deposition fluxes for NH+
4 and NO−

3 over the
subarctic Western North Pacific Ocean during the cruise.
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Figure 10. Schematic diagram of atmospheric inorganic N input to the subarctic western 2 

North Pacific Ocean during 29 July–19 August 2008. The numbers in circles represent 3 

concentrations of NH4
+ and NO3

– in aerosols (in neq m–3), rainwater (in µeq L–1) and sea fog 4 

water (in µeq L–1). The mean percentages of total (fine + coarse) aerosol concentrations in 5 

fine (D < 2.5 µm, white) and coarse (D > 2.5 µm, yellow) modes for NH4
+ and NO3

– are 6 

shown in circles for aerosol. The orange and blue arrows and numbers (in µmol m–2 d–1) 7 

indicate NH4
+ (orange) and NO3

– (blue) fluxes via dry, wet, and sea fog deposition. 8 

Fig. 10. Schematic diagram of atmospheric inorganic N input to the subarctic Western North
Pacific Ocean during 29 July–19 August 2008. The numbers in circles represent concentrations
of NH+

4 and NO−
3 in aerosols (in neqm−3), rainwater (in µeql−1) and sea fog water (in µeql−1).

The mean percentages of total (fine+ coarse) aerosol concentrations in fine (D < 2.5µm, white)
and coarse (D > 2.5µm, yellow) modes for NH+

4 and NO−
3 are shown in circles for aerosol. The

orange and blue arrows and numbers (in µmolm−2 d−1) indicate NH+
4 (orange) and NO−

3 (blue)
fluxes via dry, wet, and sea fog deposition.
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